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Abstract
We study the particle spectrum Mn(h) in the two-dimensional ferromagnetic
Ising field theory in a weak external magnetic field h. According to the Wu
and McCoy scenario of the weak confinement, pairs of fermions (domain
walls) are coupled into bosonic kink–antikink bound states at small h > 0.
Fluctuations with more than two fermions also contribute to the wavefunctions
of the compound particles, leading to multi-fermion corrections to their masses
Mn(h) in higher orders in h. We describe a perturbative procedure, which allows
us to account for both multi-fermion fluctuations and the long-range confining
interaction between fermions, and leads to the formfactor expansions for the
renormalized parameters of the model. We obtain integral representations for
the third-order multi-fermion correction to the mass Mn(h), which arises from
the regular correction to the kernel of the Bethe–Salpeter equation.

PACS numbers: 05.50.+q, 03.70.+k, 11.10.−z, 12.39.−x

1. Introduction

In recent years, much progress has been achieved in the understanding of the scaling limit
of the two-dimensional Ising model, which is known as the Ising field theory (IFT); for
a review, see [1]. Providing direct information about the Ising universality class in two
dimensions, the IFT can also be viewed as a continuous dynamical model of the one-
dimensional uniaxial ferromagnet. Being, perhaps, the simplest relativistic model describing
confinement of topological excitations, the IFT can give a deep insight into some nontrivial
aspects of confinement in particle and condensed matter physics.

The IFT contains parameters m and h, which are proportional to the deviations of
temperature T and magnetic field H from their critical values in the two-dimensional lattice
Ising model, m ∼ (Tc − T ), h ∼ H . At the critical point m = 0, h = 0, the IFT reduces
to the conformal field theory (CFT) with central charge c = 1

2 , whose Euclidean action ACFT
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describes free massless Majorana fermions. It has two relevant operators: the energy density
ε(x) and the order spin operator σ(x). The IFT can be defined as the perturbation of the Ising
conformal field theory by these two operators, which is described by the action [2]

AIFT = ACFT + 2πm

ˆ
ε(x) d2x − h

ˆ
σ(x) d2x. (1)

In fact, only one dimensionless parameter η = m/|h|8/15 determines the physics of the IFT.
The IFT, being not integrable for generic h and m, admits exact solutions along the

directions h = 0 and m = 0. The line h = 0,m �= 0 corresponds to Onsager’s exact solution
[3]. Fermions remain free here, but gain the mass |m|. In the disordered (paramagnetic) phase
m < 0 these fermions are ordinary particles, while in the ordered (ferromagnetic) phase m > 0
they are interpreted as topological excitations (kinks), which separate regions with oppositely
directed spontaneous magnetization. A nonzero magnetic field h > 0 induces interaction
between fermions, breaking the integrability of the IFT at m �= 0. On the other hand, the IFT
has a remarkable exact solution at m = 0, h �= 0 containing eight massive particles, which
was found by Zamolodchikov [4].

Beyond the integrable directions, the IFT can be studied by approximate methods—
numerical and analytical. An effective numerical method known as the truncated conformal
space approach was discovered by Yurov and Alexei Zamolodchikov [5, 6]. Fonseca and
Zamolodchikov [7] modified this technique and applied it to the analysis of analytical properties
of the IFT free energy continued to complex values of the scaling parameter η.

For an analytical study of the IFT for h and m close to the integrable directions, it is natural
to exploit perturbation expansions. Formfactor perturbation theory developed by Delfino et al
[8] has been applied [8, 9] to calculate the variation of the particle mass spectrum and the
decay widths of a non-stable particle for small η, i.e. near the line m = 0. Further information
on the resonance parameters in the IFT at small η was extracted from the finite volume data
by Pozsgay and Takács [10]. One could expect that the perturbation expansion at m �= 0 and
small h should be simpler, since the IFT is free at h = 0 and m �= 0. Though this is really
the case in the high-temperature phase m < 0, the small-h expansion at m > 0 turns out
to be rather non-trivial due to the long-range attractive potential between the neighbouring
fermions, which is induced by the external magnetic field h > 0. This attractive interaction
cannot be accounted for by the straightforward formfactor perturbation theory at small values
of h, and leads to confinement of fermions.

The effect of a small magnetic field h, which breaks the Z2-symmetry in the ordered phase
m > 0 in the IFT, can be qualitatively understood by the following simple arguments first
developed by McCoy and Wu [11]. At h = 0, two ferromagnetic ground states |0+〉 and |0−〉
with spontaneous magnetizations +σ̄ and −σ̄ have the same energy. A weak magnetic field
h > 0 removes degeneration decreasing the energy of the state |0+〉 and increasing the energy
of the state |0−〉, which becomes metastable. In order to generate a domain of the metastable
phase in the stable surrounding, one needs to add the energy proportional to the length of the
domain. In other words, two domain walls bounding such a domain attract one another with
the energy 2hσ̄ l proportional to their separation l; see figure 1. The long-range attraction leads
to confinement: all domain walls are coupled into pairs at arbitrary small h > 0. Elementary
excitations are now the domains bounded by two kinks, while an isolated kink gains infinite
energy.

The mechanism of confinement outlined above is quite general in one-dimensional
systems. It is realized in continuous one-dimensional models, such as the multi-frequency
sinh-Gordon model [12], q-state Potts field theory [13], and in the discrete Ising spin chain
[14]. Confinement of topological excitations in the one-dimensional antiferromagnet has been
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h

Figure 1. Two kinks interact with the energy 2hσ̄ l.

observed experimentally by Kenzelmann et al [15]. On the other hand, there are a lot of
similarities between confinement in the IFT and in the ’t Hooft’s model for two-dimensional
multicolour QCD [16]; see the discussion in [2]. Accordingly, the fermions and their bound
states in the IFT in the confinement regime are called ‘quarks’ and ‘mesons’, respectively.

At small h, the weak confinement regime is realized in the IFT. In this regime, the mass
spectrum Mn of mesons is dense in the segment [2m,∞). Two asymptotic expansions describe
Mn at h → 0 in different regions of this segment. Near the edge point 2m (i.e. for fixed n at
h → 0), one can use the low energy expansion in fractional powers of the magnetic field [2, 7].
On the other hand, for n � 1 and h → 0, the semiclassical expansion in integer powers of h
can be applied [2, 17]. The derivation of both expansions is based on the perturbative analysis
of the Bethe–Salpeter equation, which determines the meson mass and wavefunction in the
two-quark approximation. The latter implies that one approximates the meson wavefunction
(the eigenstate of the IFT Hamiltonian) by the two-quark state, neglecting multi-quark (four-
quark, six-quark, etc) contributions to it. The two-quark approximation is asymptotically
exact in the limit h → 0 giving correct meson masses in the leading order in h. However,
starting from the second order in h, it is necessary to take into account the virtual multi-quark
fluctuations. Note that multi-quark effects are also essential for interesting phenomena such
as the decay of unstable mesons and inelastic meson scattering.

The second-order multi-quark correction to the meson mass was obtained by Fonseca and
Zamolodchikov [2]. These authors also demonstrated that the multi-quark corrections could
come up in the weak-coupling expansions of the meson masses Mn in three ways:

(i) through the radiative corrections of the quark mass and self-energy,
(ii) by renormalization of the long-range attractive force between the neighbouring quarks

(the ‘string-tension’),
(iii) by modifying the regular part of the Bethe–Salpeter kernel, which is responsible for the

pair interaction between quarks at short distances.

It turns out that only the first contribution (i) gives rise to the second-order correction to the
meson mass, while (ii) and (iii) should show up only in the third-order correction, which is
still unknown.

The extension of the weak-coupling expansions for the meson masses to the third order
in the magnetic field presents an interesting problem, which we address in this work. It
could give us some insight into the role of the multi-particle fluctuations in the composite
particles in non-integrable models exhibiting confinement. Since the multi-quark effect is
also responsible for the decay of unstable mesons, this should manifest itself in some form
in the perturbative meson mass spectrum near and above the stability threshold. Note that an
accurate numerical calculation of the lowest meson masses was reported in [2], which clearly
indicates the contribution of the multi-quark fluctuations.
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Since the problem outlined above is rather involved, here we shall concentrate only on
three parts of it. First, we extend the semiclassical expansion of the original (written in the
two-quark approximation) Bethe–Salpeter equation to the third order in h. Second, describe
the formfactor perturbative technique, which is suitable to deal with multi-particle fluctuations
in systems with confinement. Finally, we obtain the integral representations for the ‘local’
multi-quark correction of the meson masses, i.e. corrections (iii) induced by renormalization
of the local interaction between quarks.

The paper is organized as follows. In section 2, we describe the definition of the IFT and
its operator content. In two subsequent sections, we briefly summarize the recent progress
in the theory of the weak confinement in the IFT. Section 3 introduces the Bethe–Salpeter
equation and its weak-coupling expansions and section 4 contains preliminary discussion
of the multi-quark corrections to the meson masses. In section 5 we develop a formfactor
perturbative procedure, which is modified to a system with a long-range confining interaction
between fermions. It is based on the partial diagonalization of the Hamiltonian in the fermionic
number and allows one to effectively account for the multi-quark fluctuations by ‘dressing’ the
fermionic operators. In section 6, we describe a compact integral representation for the local
third-order correction to the meson mass, which is further analysed in appendix B. Appendix
A contains a perturbative solution of the ‘bare’ Bethe–Salpeter equation to the third order in
h. Concluding remarks are presented in section 7.

2. The model

The Ising field theory is the Euclidean field theory, which describes the scaling limit of the
two-dimensional lattice Ising model in the critical region T → Tc,H → 0. It is defined by
the action

AIFT = 1

2π

ˆ ∞

−∞
[ψ∂ψ + ψ∂ψ + imψψ] d2x − h

ˆ ∞

−∞
d2xσ(x). (2)

Here, x denotes a point in the plane R
2 with Cartesian coordinates 〈x(x), y(x)〉 and the complex

coordinate z = x + iy, ∂ = 1
2 (∂x − i∂y), ∂ = 1

2 (∂x + i∂y). Action (2) is covariant under rotation,
and becomes Lorentz covariant after the Wick turn y → it .

Corresponding to action (2), the Hamiltonian can be written in the form

H = H0 + hV, where

H0 =
ˆ ∞

−∞

dp

2π
ω(p)a†(p)a(p), (3)

V = −
ˆ ∞

−∞
dxσ(x),

and ω(p) = (p2 + m2)1/2 is the spectrum of free fermions. Fermionic operators a†(p′) and
a(p) obey the canonical anticommutational relations

{a(p), a†(p′)} = 2πδ(p − p′), {a(p), a(p′)} = {a†(p), a†(p′)} = 0.

Commonly used are also fermionic operators a(β), a†(β), corresponding to the rapidity
variable β = arcsinh(p/m):

a(β) = ω(p)1/2a(p), a†(β) = ω(p)1/2a†(p).

Notations
|p1, . . . , pN 〉 = a†(p1) · · · a†(pN)|0〉, 〈p1, . . . , pN | = 〈0|a(p1) · · · a(pN),

|β1, . . . , βN 〉 = a†(β1) · · · a†(βN |0〉, 〈β1, . . . , βN | = 〈0|a(β1) · · · a(βN)

for the fermionic basis states with definite momenta will be used.
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The order spin operator σ(x) = σ(x, y)|y=0 in the ordered phase T < TC (i.e. at m > 0)
can be determined in the infinite line x ∈ R as the normally ordered exponent [18, 19]:

σ(x) = σ̄ : eρ(x)/2 :,
ρ(x)

2
=
ˆ ∞

x
dx′(χ(x′, y)∂yχ(x′, y))|y=0, (4)

χ(x, y) = i
ˆ ∞

−∞

dp

2π

eipx

√
ω(p)

(a†(−p) eω(p)y − a(p) e−ω(p)y),

where σ̄ = m1/821/12e−1/8A3/2 is the zero-field vacuum expectation value of the order field
(spontaneous magnetization) and A = 1.282 43 . . . is Glaisher’s constant.

Alternatively, operators σ(x) can be completely characterized by their formfactors
〈β1, . . . , βK |σ(0)|β ′

1, . . . , β
′
N 〉, whose explicit expressions are well known [7, 20]. In the

ordered phase

〈β1, . . . , βK |σ(0)|β ′
1, . . . , β

′
N 〉 = i(K+N)/2σ̄

∏
0<i<j�K

tanh

(
βi − βj

2

)

×
∏

0<k<q�N

tanh

(
β ′

k − β ′
q

2

) ∏
0<s�K
0<t�N

coth

(
βs − β ′

t

2

)
, (5)

if (K + N) is even and 〈β1, . . . , βK |σ(0)|β ′
1, . . . , β

′
N 〉 = 0 for odd (K + N). The right-hand

side in (5) contains factors coth
( βs−β ′

t

2

)
, which are singular at βs = β ′

t . These kinematic
singularities should be understood in the sense of the Cauchy principal value

coth

(
βs − β ′

t

2

)
→ 1

4

[
coth

(
βs − β ′

t + i0

2

)
+ coth

(
βs − β ′

t − i0

2

)]
.

Note that the Wick expansion holds for formfactors (5) of the spin operator. For example,

σ̄ 〈β1, β2|σ(0)|β ′
1, β

′
2〉 = 〈β1|σ(0)|β ′

2〉〈β2|σ(0)|β ′
1〉

− 〈β1|σ(0)|β ′
1〉〈β2|σ(0)|β ′

2〉 + 〈β1, β2|σ(0)|0〉〈0|σ(0)|β ′
1, β

′
2〉.

3. Bethe–Salpeter equation

The meson energy spectra En(P ) can be formally determined from the eigenvalue problem:

H|�n(P )〉 = [En(P ) + Evac]|�n(P )〉, (6)

H = H0 + hV,

P̂ |�n(P )〉 = P |�n(P )〉, (7)

where P̂ is the total momentum operator:

P̂ =
ˆ ∞

−∞

dp

2π
pa†(p)a(p)

and Evac is the ground-state energy, which is proportional to the length of the system L.
The eigenvalue problem (6) is quite difficult, since the Hamiltonian contains the order

spin operator σ(x), which is highly nonlinear in fermionic fields. A significant simplification
can be provided by the two-quark approximation [7, 21]. It implies that one replaces the exact
Hamiltonian eigenvalue problem (6), (7) by its projection to the two-quark subspace F2 of the

5
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Fock space F:

P2H|�̃n(p)〉 = [Ẽn(P ) + Ẽvac]|�̃n(P )〉, (8)

P̂ |�̃n(P )〉 = P |�̃n(P )〉,
|�̃n(P )〉 ∈ F2.

Here,Pn denotes the orthogonal projector onto the n-quark subspace Fn of F. Tildes distinguish
solutions of (8) from those of the exact eigenvalue problem (6).

In the momentum representation, equation (8) takes the form [2]

[ω(P/2 + p) + ω(P/2 − p) − Ẽ(P )]�P (p) = f0

 ∞

−∞
GP (p|k)�P (k)

dk

2π
, (9)

where
ffl

denotes the Cauchy principal value integral:

〈P ′/2 − p, P ′/2 + p|�̃(P )〉 = 2πδ(P ′ − P)�P (p),

GP (p|k) = G(P/2 + p, P/2 − p|P/2 + k, P/2 − k),
(10)

G(p1, p2|k1, k2) = 1

4σ̄
〈p2, p1|σ(0)|k1, k2〉 = 1/4

[ω(p1)ω(p2)ω(k1)ω(k2)]1/2

·
[

ω(p1) + ω(k2)

p1 − k2

ω(p2) + ω(k1)

p2 − k1
− ω(p1) + ω(k1)

p1 − k1

ω(p2) + ω(k2)

p2 − k2

+
p1 − p2

ω(p1) + ω(p2)

k1 − k2

ω(k1) + ω(k2)

]
, (11)

and f0 = 2hσ̄ = λm2 is the ‘bare string tension’. Index n is omitted in (9), (10). Note that
�P (p) is an odd function of p, and

GP (p|k) = 1

(p − k)2
− 1

(p + k)2
+ G

(reg)

P (p|k),

where G
(reg)

P (p|k) is regular at real p and q. The pole terms in GP (p|k) produce after the
Fourier transform the long-range linear attractive potential f0|x| proportional to the distance
|x| between the two quarks. The regular term G

(reg)

P (p|k) is responsible for the local interaction
between quarks vanishing at distances � m−1.

Equation (9) is the Bethe–Salpeter equation written in a generic momentum frame. It
simplifies in two cases.

• In the frame of the centre of mass of two quarks [7], P = p1 + p2 = 0:

[2ω(p) − Ẽ(0)]�0(p) = f0

 ∞

−∞

dk

2π

�0(k)

2ω(p)ω(k)

·
[(

ω(p) + ω(k)

p − k

)2

+
1

2

pk

ω(p)ω(k)

]
. (12)

• In the infinite momentum frame (see appendix A in [2]), P → ∞:[
m2

1 − u2
− M̃2

4

]
�(u) = f0

 1

−1
F(u|v)�(v)

dv

2π
, (13)

where the scaled variables u = (p1 − p2)/P and v = (q1 − q2)/P have been used, and

F(u|v) = [(1 − u2)(1 − v2)]−1/2

[
1 − uv

(u − v)2
− 1 + uv

(u + v)2
+

uv

4

]
,

�(u) = lim
P→∞

�P (Pu/2).

6
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The following large-P asymptotic behaviour of Ẽ(P ) was assumed in [2] in deriving
(13) from (9):

Ẽ(P ) = |P | +
M̃2

2|P | + O(|P |−3). (14)

The Bethe–Salpeter equation (9) and its particular cases (12), (13) are the linear singular
integral equations [22]. Different techniques [2, 7, 17] have been developed for their
perturbative solutions in the weak-coupling limit λ → 0. Fonseca and Zamolodchikov
calculated [2] several initial terms in the low-energy expansion (for fixed n and λ → 0) for
the eigenvalues of equation (13):

M̃2
n

4m2
− 1 = znt

2 +
z2
n

5
t4 −

(
3z3

n

175
+

57

280

)
t6 +

(
23z4

n

7875
+

1543zn

12 600

)
t8 +

13

1120π
t9

+

(
− 1894z5

n

3031 875
− 23 983z2

n

242 550

)
t10 +

3313zn

10 080π
t11 + . . . , (15)

where t = λ1/3 and (−zn) is the zero of the Airy function, Ai(−zn) = 0. The leading term in
the above expansion reproduces the old result of McCoy and Wu [11].

To the second order in λ, semiclassical expansions (for n � 1 and λ → 0) for M̃2 and for
Ẽ(0) were found in [2, 17], respectively. We extend the former expansion to the third order
in λ using the technique, which was previously applied in a similar discrete-chain problem
[14]. This calculation is described in appendix A, and the result reads as

M̃2
n

4m2
= cosh2 θn, (16)

where θn solves the equation

sinh 2θn − 2θn = 2πλ(n − 1/4) + 2λ2S1(θn) + 2λ3S2(θn) + O(λ4), (17)

and

S1(θn) = 1

sinh(2θn)

(
5

24 sinh2 θn

− 1

12
+

1

4 cosh2 θn

− sinh2 θn

6

)
, (18)

S2(θn) = 1

192π sinh6(2θ)
{−999θn − 3θn[648 cosh(2θn) + 228 cosh(4θn)

+ 56 cosh(6θn) + 15 cosh(8θn)] + 546 sinh(2θn) + 363 sinh(4θn)

+ 170 sinh(6θn) + 33 sinh(8θn) + sinh(12θn)}. (19)

To the second order, (16)–(19) agree with [2].

4. Beyond the two-quark approximation

Eigenvalues Ẽn(P ) of the Bethe–Salpeter equation (9) are not the same as the eigenvalues
En(P ) of the initial problem (6):

En(P ) = Ẽn(P ) + δEn(P ). (20)

The difference δEn(P ) is caused by the multi-quark corrections, which are ignored in (9), but
contribute to En(P ). The exact meson energy spectra should have the form

En(P ) = (
M2

n + P 2
)1/2

(21)

due to the Lorentz covariance of the IFT, but this form does not hold [2] for the meson energies
Ẽn(P ) determined in the two-quark approximation.

7
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In the P → ∞ limit, equation (20) yields due to (14) and (21)

M2
n = M̃2

n + δM2
n,

where

δM2
n = lim

P→∞
[2PδEn(P )].

The first analysis of the multi-quark corrections to the meson masses has been done
by Fonseca and Zamolodchikov [2]. They claim that multi-quark corrections treated
perturbatively in λ should modify the Bethe–Salpeter equation (9) to the form

[ε(P/2 + p) + ε(P/2 − p) − E(P )] �P (p) = f

 ∞

−∞
GP (p|k)�P (k)

dk

2π
. (22)

Here ε(p) and f are the renormalized quark dispersion law and the renormalized string tension,
respectively. The renormalized kernel GP (p|k) is assumed to have the structure

GP (p|k) = GP (p|k) + G
(reg)

P (p|k), (23)

where GP (p|k) is the original kernel (11), and the correction term G
(reg)

P (p|k) = O(λ),
being regular at k = ±p, effectively modifies the pair interaction between quarks at short
distances �m−1.

Note that the renormalized quark energy does not have the Lorentz covariant form [2]

ε(p) = (p2 + m2)1/2 + δε(p) = (
p2 + m2

q

)1/2
+ ε(p),

since quarks are not free particles at h > 0 due to their confinement. Assuming
ε(p) = O(|p|−3) at p → ∞, one can define the ‘dressed’ quark mass mq from the
large-p asymptotics of ε(p):

ε(p) = |p| +
m2

q

2|p| + O(|p|−3).

There are no nonperturbative definitions of renormalized quantities in equation (22). Instead,
it is expected that they can be determined order by order by their power series in λ:

m2
q = m2(1 + a2λ

2 + a3λ
3 + · · ·), (24a)

δε(p) = δ2ε(p) + δ3ε(p) + O(λ4), (24b)

f = f0(1 + c2λ
2 + c4λ

4 + · · ·) (24c)

G
(reg)

P (p|k) = 1G
(reg)

P (p|k) + 2G
(reg)

P (p|k) + O(λ3). (24d)

Let us briefly summarize what is known about the coefficients in the above expansions.
Fonseca and Zamolodchikov [23] analysed the exact integral representation for the coefficient
a2 in (24a), and obtained from it the value

a2 = 0.071 010 809 . . . . (25)

On the other hand, one can expand a2 to the sum

a2 = a2,3 + a2,5 + · · ·
of the second-order (in λ) diagrams with three, five, etc, quarks in the intermediate state. The
contribution of three-quark diagrams to a2 was estimated in [7]:

a2,3 ≈ 0.07 . . . (26)

8
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We obtain its exact value

a2,3 = 1

16
+

1

12π2
= 0.070 94 . . . ; (27)

this calculation will be presented elsewhere. Comparison of (27) with (25) shows that the
second-order radiative correction to the quark mass is essentially determined by the three-
quark contribution. Diagrams with five and more quarks in the intermediate state give less
than 0.1% of a2.

The term of order λ2 in expansion (24b) for δε(p) was found by Fonseca and
Zamolodchikov [2]:

δ2ε(p) = λ2

2

m2a2

ω(p)
− λ2

8

m4p2

ω5(p)
. (28)

They have also given strong arguments that coefficients c2k in expansion (24c) should be
simply related to coefficients g̃j in the well-known weak-h expansion [20] for the vacuum
energy Evac:

Evac = Lm2
(− 1

2λ + g̃2λ
2 + g̃3λ

3 + g̃4λ
4 + · · · ), (29)

namely

c2k = −2g̃2k+1. (30)

In particular, c2 = −0.003 889 . . ..
It is not difficult to modify the weak-coupling expansions (both low-energy and

semiclassical) to account for renormalized quantities in the Bethe–Salpeter equation (22)
and to express multi-quark correction δMn in terms of coefficients in (24a)–(24d). It turns out
[2] that for calculation of the meson masses Mn to the third order in λ, it would be sufficient
to know the renormalized quark mass mq and the string tension f to the third order in λ, and
the ‘regular’ term G

(reg)

P (p|q) in (23) to the linear order in λ in the limit P → ∞. To this
end, one needs to determine two unknown quantities: the third-order correction to the quark
mass (coefficient a3 in (24a)) and the kernel 1G

(reg)
∞ (p|k) in (24d). In fact, we need only the

diagonal part of the latter, 1G
(reg)
∞ (p|p).

The problem of explicit calculation of a3 and 1G
(reg)

P (p|k) is quite difficult. Here, we
do not try to find its complete solution. Instead, in subsequent sections we shall obtain several
representations for these quantities in terms of formfactors of spin operators σ(x) and their
products σ(x1)σ (x2).

5. Diagonalization of the Hamiltonian in the fermionic number

The Bethe–Salpeter equation (9) is approximate, since the IFT Hamiltonian (3) does not
conserve the number of fermions—the ‘bare’ quarks. Let us try to find a unitary operator
U(h), which transfers operators generating ‘bare’ fermions to operators generating ‘dressed’
fermions such that their number would be conserved by the evolution operator. It is clear
that the two-fermion Bethe–Salpeter equation, written for these ‘dressed’ fermions, should be
exact, and it could be identified with the renormalized Bethe–Salpeter equation (22).

Let a†(p), a(p) be a set of creation/annihilation operators of the ‘dressed’ fermions,
which are related to the ‘bare’ ones by the unitary transform

a(p) = U(h)a(p)U(h)−1, a†(p) = U(h)a†(p)U(h)−1

with the operator U(h) depending on the magnetic field h. We shall also underline all ‘dressed’
operators and states:

A = U(h)−1AU(h), |�〉 = U(h)−1|�〉.
9
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Expanding U(h) to the power series in h:

U(h) = 1 +
∞∑

n=1

hnFn,

we obtain a set of equalities following from the unitarity condition U(h)U(h)† = 1:

F1 + F†
1 = 0,

F2 = F2
1

2
+ �, �† = −�,

F3 = �F1 + F1�

2
+ Y, Y † = −Y,

. . .

Denote by N the operator of the number of ‘dressed’ fermions

N =
ˆ ∞

−∞

dp

2π
a†(p)a(p),

and by Pn the projector operators onto the subspaces of n ‘dressed’ fermions. For an operator
A acting in the Fock space, let us separate the diagonal and off-diagonal parts in the ‘dressed’
fermion number n,A = Ad + As , where

Ad =
∞∑

n=0

PnAPn and As = A − Ad.

We require that H and N commute, [H, N ] = 0, or, equivalently,

Hs = 0. (31)

Rewriting (31) as

Hs = (U(h)HU(h)−1)s = 0,

one obtains(
(1 + hF1 + h2F2 + h3F3 + · · ·)(H0 + hV )

(
1 + hF†

1 + h2F†
2 + h3F†

3 + · · · ))
s
= 0. (32)

Let us collect linear terms in h in (32):

〈p|F1|k〉 = 〈p|V |k〉
ω(p) − ω(k)

for n(p) �= n(k). (33)

From here on, we use compact notation |k〉 = |k1, . . . , kn(k)〉, 〈p| = 〈pn(p), . . . , p1|, ω(p) =
ω(p1)+ · · ·+ω(pn(p)) and so on. Equation (33) defines (F1)s , but does not impose restrictions
on (F1)d . We fix the latter by the condition (F1)d = 0.

In the second order in h, one finds from (32):(
F2

1

2
H0 + H0

F2
1

2
− F1H0F1 + [�,H0] + [F1, V ]

)
s

= 0. (34)

This equation defines �s . We put �d = 0 and insert the intermediate state decomposition

1 =
∑

q

|q〉〈q| ≡ |0〉〈0| +
∞∑

n(q)=1

1

n(q)!

ˆ ∞

−∞

∣∣q
n(q)

, . . . , q
1
〉〈q

1
, . . . , q

n(q)

∣∣ n(q)∏
j=1

dqj

2π

10
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into (34), providing

〈p|�|k〉= 1

ω(k)− ω(p)

⎧⎪⎨⎪⎩
∑

q
n(p) �=n(q)�=n(k)

〈p|V |q〉〈q|V |k〉
[ω(q)− ω(p)][ω(q)− ω(k)]

[
ω(q)− ω(p) + ω(k)

2

]

+
∑

q
n(q)=n(k)

〈p|V |q〉〈q|V |k〉
[ω(q) − ω(p)]

+
∑

q
n(q)=n(p)

〈p|V |q〉〈q|V |k〉
[ω(q) − ω(k)]

⎫⎪⎬⎪⎭
for n(p) �= n(k). (35)

Note that one can drop all underlines on the right-hand sides of equations (33) and (35), since
〈�′|A|�〉 = 〈�′|A|�〉. Similarly, we put Yd = 0, since equation (32) (in the third order in h)
determines Ys only.

In the rest of this section we shall consider how the Hamiltonian H acts in the subspaces
with zero, one and two renormalized fermions.

5.1. Vacuum sector

In the vacuum sector, one obtains from (33), (34) the standard Rayleigh–Schrödinger expansion
(29) for the IFT ground-state energy:

Evac = 〈0|H|0〉 = 〈0|U(h)(H0 + hV )U(h)−1|0〉 = h〈0|V |0〉 + δ2Evac + δ3Evac + O(h4),

where

δ2Evac = −h2
∑

q
n(q)�=0

〈0|V |q〉〈q|V |0〉
ω(q)

,

δ3Evac = +h3

{
− 〈0|V |0〉

∑
q

n(q)�=0

〈0|V |q〉〈q|V |0〉
[ω(q)]2

+
∑
q,q ′

n(q) �=0�=n(q ′)

〈0|V |q〉〈q|V |q ′〉〈q ′|V |0〉
ω(q)ω(q ′)

}
.

(36)

5.2. One-fermion sector

In the one-fermion sector n(p) = n(k) = 1, and we find

〈p|H|k〉 = 2πδ(p − k)ω(p) + h〈p|V |k〉 + δ2〈p|H|k〉 + δ3〈p|H|k〉 + O(h4), (37)

where

δ2〈p|H|k〉 = −h2

2

∑
q

n(q)�=n(p)

〈p|V |q〉〈q|V |k〉
[

1

ω(q) − ω(p)
+

1

ω(q) − ω(k)

]
, (38)

δ3〈p|H|k〉 = +
h3

2

∑
q,q ′

〈p|V |q〉〈q|V |q ′〉〈q ′|V |k〉
{

[1 − δn(q),n(p)][1 − δn(q ′),n(p)]

·
[

1

[ω(p) − ω(q)]

1

[ω(p) − ω(q ′)]
+

1

[ω(k) − ω(q)]

1

[ω(k) − ω(q ′)]

]

+
1

ω(q) − ω(q ′)

[
δn(q),n(p)[1 − δn(q ′),n(p)]

ω(q ′) − ω(p)
− [1 − δn(q),n(p)]δn(q ′),n(p)

ω(q) − ω(k)

]}
. (39)

11
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X
X

Figure 2. One-fermion state (42) represents a kink centred at X.

First, let us consider the linear term in h on the right-hand side of (37):

h〈p|V |k〉 = −h

ˆ ∞

−∞
dx〈p|σ(x)|k〉, (40)

where

〈p|σ(x)|k〉 = iσ̄ exp[ix(k − p)]

p − k

ω(p) + ω(k)

[ω(p)ω(k)]1/2

is the formfactor of the order spin operator (4) in the momentum basis. The integration in x in
(40) leads to the divergent result

h〈p|V |k〉 = −2π iδ(p − k)
f0

p − k
. (41)

This singularity is well known in the standard formfactor perturbation theory, where it appears
as the divergence of the first-order correction to the fermion mass, which is interpreted as a
formal indication of confinement [1, 8].

To give a meaning to equation (41), let us mention that the generalized function δ(q)/q

is well defined and equivalent to −δ′(q) in the class of the main functions ϕ(q) ∈ C1 taking a
zero value at the origin, ϕ(0) = 0. So, one can formally write

δ(p − k)
f0

p − k
= −f0δ

′(p − k) + Cδ(p − k)

with some indeterminate constant C.
To get further insight, it is instructive to consider the matrix element 〈X|hV |k〉, where the

state 〈X| describes a ‘bare’ quark located at the point X:

〈X| =
ˆ ∞

−∞

dp

2π
eipX〈p|. (42)

For the matrix element of the order spin operator σ(x), we get

〈X|σ(x)|k〉 =
 ∞

−∞

dp

2π
iσ̄

exp[ip(X − x) + ikx]

p − k

ω(p) + ω(k)√
ω(p)ω(k)

= sign(x − X)σ̄ eikX + iσ̄ eikx
ˆ ∞

−∞

dp

2π

exp[ip(X − x)]

p − k

×
{[

ω(p)

ω(k)

]1/4

−
[

ω(k)

ω(p)

]1/4
}2

. (43)

Here the first term on the right-hand side is non-local, while the second term is well localized
near the diagonal x = X exponentially vanishing for |x − X| � m−1. Equation (43) allows
one to interpret the one-fermionic state 〈X| as a kink of width ∼ m−1 centred at X, which
divides the regions with magnetizations −σ̄ to the left and +σ̄ to the right sides of it; see
figure 2.

12
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Substitution of (43) into (40) yields after integration in x

h〈X|V |k〉 = (f0X + C) eikX,

where f0 = 2hσ̄ is the ‘bare string tension’ and the constant C is proportional to the length
of the system L being infinite in the thermodynamic limit. Thus, Hamiltonian (3) acts in the
one-particle subspace of ‘bare’ quarks F1 as

P1HP1 = ω(p̂) + f0x̂ + C,

where x̂ and p̂ are the one-particle coordinate and momentum operators respectively. The
same formula written for ‘dressed’ quarks

P1HP1 = ε(p̂) + f x̂ + CR (44)

gives us the perturbative definition of the renormalized quark dispersion law ε(p) and
renormalized string tension f . In the momentum representation, (44) takes the form

〈p|H|k〉 = 2πδ(p − k)[ε(p) + CR] + 2π if δ′(p − k),

which should be compared with (37) order by order in h.
The second-order term in (37) determines the leading correction to the quark energy

δ2ε(p) in expansion (24b):

δ2〈p|H|k〉 = 2πδ(p − k)[δ2ε(p) + δ2Evac],

where δ2Evac is given by (36). Explicitly, it can be described either by the formfactor expansion
following from (38)

δ2ε(p) = δ2,3ε(p) + δ2,5ε(p) + · · · , (45)

δ2,nε(p) = −h2

n!

ˆ ∞

−∞

dq1 · · · dqn

(2π)n−1

δ(q1 + · · · + qn − p)

ω(q1) + . . . + ω(qn) − ω(p)

· lim
k→p

〈p|σ(0)|q1, . . . , qn〉〈qn, . . . , q1|σ(0)|k〉, (46)

or by the equivalent integral representation

δ2ε(p) = −h2
ˆ ∞

−∞
dx

ˆ ∞

0
dy lim

k→p
〈p|σ(x, y)(1 − P1)σ (0, 0)|k〉, (47)

where σ(x, y) = exp(−ixP̂ + yH0)σ (0) exp(ixP̂ − yH0).
Representations (45)–(47) were first obtained and studied by Fonseca and Zamolodchikov

[2, 7, 23]; we quoted their results in section 4 (see equations (25), (26), (28)). We determine
the exact large-p asymptotics of the integral (46) for n = 3:

δ2,3ε(p) = λ2m2

2p

(
1

16
+

1

12π2

)
+ O(p−2), (48)

which leads to (27).
The third-order term (39) in (37) contributes to both the string tension f and the quark

energy ε(p). It determines δ3ε(p) and the constant a3 in expansion (24a) for the quark
mass mR . Calculation of a3 would be of much interest for interpreting the recent numerical
calculation of the masses of the lightest mesons; see figure 7 in [2].

13
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5.3. Two-fermion sector

In the two-particle sector of ‘dressed’ quarks, the Hamiltonian acts as

〈p2, p1|H|k1, k2〉 = (2π)2[ω(p1) + ω(p2)][δ(p1 − k1)δ(p2 − k2) − δ(p1 − k2)δ(p2 − k1)]

+ h〈p|V |k〉 + δ2〈p|H|k〉 + δ3〈p|H|k〉, +O(h4), (49)

where δ2〈p|H|k〉 and δ3〈p|H|k〉 are given by equations (38) and (39), respectively, with
n(p) = n(k) = 2. Two initial terms on the right-hand side of (49) give rise to the ‘bare’
Bethe–Salpeter equation (9).

The explicit form of the second-order correction is

δ2〈p2, p1|H|k1, k2〉 = −4πf0δ(p1 + p2 − k1 − k2)δ2G(p1, p2|k1, k2),

where

δ2G(p1, p2|k1, k2) = h

8σ̄

∞∑
j=2

1

(2j)!

ˆ ∞

−∞

dq1 . . . dq2j

(2π)2j−1
δ(p1 + p2 − q1 − . . . − q2j )

· 〈p2, p1|σ(0)|q1, . . . , q2j 〉〈q2j , . . . , q1|σ(0)|k1, k2〉
·
[

1

ω(q1) + · · · + ω(q2j ) − ω(p1) − ω(p2)

+
1

ω(q1) + · · · + ω(q2j ) − ω(k1) − ω(k2)

]
. (50)

Application of the Wick expansion to the formfactors in the integrand breaks (50) into a
sum of diagrams. Some of them contain one or two products of the form

〈pα|σ(0)|qγ 〉〈qγ |σ(0)|kβ〉 = ω(pα) + ω(qγ )

[ω(pα)ω(qγ )]1/2

ω(kβ) + ω(qγ )

[ω(kβ)ω(qγ )]1/2
P

1

pα − qγ

· P 1

kβ − qγ

,

(51)

which have two kinematic singularities in the integration variable qγ at qγ = pα and qγ = kβ .
Here, P 1

z
denotes the ‘principal value’ generalized function:

P
1

z
= 1

2

(
1

z + i0
+

1

z − i0

)
.

Let us rewrite the singular factor on the right-hand side of (51) as

P
1

pα − qγ

· P 1

kβ − qγ

= P
1

(pα − qγ )(kβ − qγ )
+ π2δ(pα − kβ)δ(pα − qγ ), (52)

where

P
1

(pα − qγ )(kβ − qγ )
= 1

2

[
1

(pα − qγ − i0)(kβ − qγ − i0)
+

1

(pα − qγ + i0)(kβ − qγ + i0)

]
.

Substitution of (52) into factor (51) leads to splitting of diagrams containing (one or two)
such factors into several (two or four) terms. The resulting diagrams can be classified by the
number of δ-functions δ(pα − kβ) arising from the second term on the right-hand side of (52).

(i) Diagrams with two δ-functions give rise to the vacuum energy correction δ2Evac.
(ii) Diagrams with one δ-function contribute to the corrections δ2ε(p1), δ2ε(p2) to the energies

of two quarks.
(iii) The rest of the diagrams are regular at pα = kβ for α, β = 1, 2. We denote their sum by

δ2G(reg)(p1, p2|k1, k2). It determines (to the linear order in h) the kernel G
(reg)

P (p|q) in
the renormalized Bethe–Salpeter equation (22):

1G
(reg)

P (p|k) = δ2G(reg)(P/2 + p, P/2 − p|P/2 + k, P/2 − k).

14
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6. Local multi-quark corrections to the meson masses

It is not difficult to account for perturbatively the regular correction term 1G
(reg)

P (p|k) in
the Bethe–Salpeter equation (22) in both the low-energy and semiclassical expansions. The
resulting local multi-quark correction to the meson energy reads as

δ3En(P ) = −f 2
0 ω3(P/2)

4m2

∂2

∂p2

∣∣∣∣
p=0

1G
(reg)

P (p|p) (53)

in the low-energy case n ∼ 1, and

δ3En(P ) = − 2f 2
0

|(p1 − p2)v|1G
(reg)

P

(
p1 − p2

2

∣∣∣∣p1 − p2

2

)
(54)

in the semiclassical case n � 1. Here, momenta p1 and p2 are the solutions of equations

p1 + p2 = P, ω(p1) + ω(p2) = (
P 2 + M2

n

)1/2
,

and

v = p1

ω(p1)
− p2

ω(p2)
.

To obtain the local multi-quark corrections to the meson masses, we rewrite (53) and (54)
in the rapidity variables β1 = arcsinh(p1/m) and β2 = arcsinh(p2/m), respectively, and then
proceed to the limit P → ∞, yielding

δ3M
2
n

m2
= −λ3

8
lim

β1→∞

(
∂

∂β1
− ∂

∂β2

)2 ∣∣∣∣
β1=β2

m2W(β1, β2)

σ̄ 2
(55)

in the low-energy case and

δ3M
2
n

m2
= − λ3m2

M2
n − 4m2

lim
β→∞

m2W(β + η, β − η)

σ̄ 2
(56)

in the semiclassical case. Here η = arccosh[Mn/(2m)], and

W(β1, β2) = 4σ̄

h
ω(p1)ω(p2)1G

(reg)

P

(
p1 − p2

2

∣∣∣∣p1 − p2

2

)
, (57)

where pj = m sinh βj for j = 1, 2. Function W(β1, β2) determined by (57) admits a compact
integral representation, analogous to (47):

W(β1, β2) =
ˆ ∞

∞
dx

ˆ ∞

0
dy lim

β ′
1→β1

β ′
2→β2

〈β2, β1|σ(x, y)(1 − P0 − P2)σ (0, 0)|β ′
1, β

′
2〉. (58)

In appendix B, we extract from this function the ‘irreducible’ part Wirr(β1, β2) which
determines δ3M

2
n . It is expressed there in terms of the two-fermion matrix elements of

the order spin operator pairs, which are explicitly known [23].
The third-order term δ3〈p|H|k〉 in (49) also contains regular and singular parts. The

former contributes to the meson masses starting from the fourth order. The latter renormalizes
the quark dispersion law and the string tension, which give rise to the ‘nonlocal’ third-order
multi-quark correction to the meson energy En(P ). It is expected [2], however, that in the limit
P → ∞ the nonlocal multi-quark corrections to En(P ) can be absorbed by renormalization of
the meson mass and string tension. Thus, the third-order multi-quark correction to the meson
masses should be described by representations (55) and (56), in which the ‘bare’ parameters
should be replaced by the renormalized ones m → mq, λ → λR , where λR = f

/
m2

q , and mq

and f are given by expansions (24a) and (24c), respectively.
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7. Conclusions

This paper is devoted to an extension to the third order of the weak-h expansions for the meson
masses Mn(h) in the ferromagnetic IFT. There are four third-order contributions to it. The first
one comes from the Bethe–Salpeter equation (13) written in the two-quark approximation.
For the semiclassical expansion this contribution is described by equations (16)–(19), for the
low-energy expansion was already determined in [2] (see (15)). Three other contributions to
Mn(h) are due to the multi-fermion fluctuations. The local contribution arises from the regular
radiative correction to the Bethe–Salpeter kernel. For this contribution, we obtain the integral
representations (55)–(58), which are compact and appropriate for analytical analysis, and
representations (B.14)–(B.16), which we plan to use in the future numerical calculations. The
last two multi-quark contributions to the meson mass come from the third-order corrections
δ3ε(p) and δ3f to the quark self-energy and string tension, which are contained implicitly
in the formfactor expansion (39). Explicit extraction of δ3ε(p) and δ3f from (39) is rather
involved. Whereas for δ3f the result is essentially known (see (24c), (29), (30)), an explicit
calculation of the third-order correction to the quark self-energy and quark mass remains an
open problem.
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Appendix A. Perturbative solution of the Bethe–Salpeter equation

In this appendix, we describe a perturbative solution of the ‘bare’ Bethe–Salpeter
equation (13) in the infinite momentum frame P → ∞ to the third order in the magnetic
field h.

A.1. Some exact relations

It is convenient to rewrite equation (13) in new notation

φ(u) = �(u)(1 − u2)−1/2, ν2 = M̃2 − 4m2

M̃2
, ρ = 2hσ̄

M̃2
.

Since φ(−u) = −φ(u), equation (13) takes the form

(u2 − ν2)φ(u) = ρ

 1

−1

dv

π
φ(v)

[
uv

2
+ 4

1 − uv

(u − v)2

]
, (A.1)

or equivalently

(u2 − ν2)φ(u) = 2iaρu + 4ρ[−u + (1 − u2)∂u]
 1

−1

dv

π

φ(v)

v − u
, (A.2)

where

a =
ˆ 1

−1

dv

4π i
vφ(v).

We shall require that φ(u) is a purely imaginary function in the interval (−1, 1).
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Figure A1. (a) D is the region of analyticity of g(u) and (b) B is the region of analyticity of U(u),

Set

g(u) = 1

2π i

ˆ 1

−1

dv

v − u
φ(v), (A.3)

for complex u /∈ [−1, 1]. The function g(u) is analytical in the region D shown in figure A1(a),
and

g(u) = −2a

u2
+ O(u−3) at u → ∞,

providing

2a = Res|u=∞[g(u)u]. (A.4)

For real u ∈ (−1, 1), we get

φ(u) = g(u + i0) − g(u − i0),

 1

−1

dv

π

φ(v)

v − u
= i[g(u + i0) + g(u − i0)],

and equation (A.2) takes the form

(u2 − ν2)[g(u + i0) − g(u − i0)] = 4iρ[−u + (1 − u2)∂u][g(u + i0) + g(u − i0)] + 2iaρu.

(A.5)

Let us define two functions in D:

U1(u) = −4iρ[−u + (1 − u2)∂u]g(u) + (u2 − ν2)g(u) − iaρu,

U2(u) = 4iρ[−u + (1 − u2)∂u]g(u) + (u2 − ν2)g(u) + iaρu.
(A.6)

Due to (A.5), we have U1(u + i0) = U2(u − i0) for u ∈ (−1, 1). Therefore, function U(u)

defined as

U(u) =
{

U1(u) for Im u > 0
U2(u) for Im u < 0

can be analytically continued into the complex region B shown in figure A1(b). Note that
U(u) is even in B and real in the interval (−1, 1).

Let us solve the differential equation (A.6) with respect to g(u):

g(u) = i

4ρ

ˆ u

−i∞
dv

U+(v) exp
[

i
4ρ

(u − v)
]

[(1 − u2)(1 − v2)]1/2

[
(1 − u)(1 + v)

(1 + u)(1 − v)

]i(1−ν2)/(8ρ)

, (A.7)
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-1 1 Re

Im V

V

D

C

C

+

u

Figure A2. Integration paths in equations (A.7) and (A.8).

where U+(u) = U1(u) + iaρu, and the branch of the last factor in the integrand is fixed as

arg

[
1 − (u + i0)

1 + (u + i0)

]
= arg

[
1 + (v + i0)

(1 − (v + i0)

]
= 0 for real u, v ∈ (−1, 1).

The integration in (A.7) goes along the path C+, as shown in figure A2.
Function g(u) should be single valued in D. The trivial monodromy behaviour of g(u) at

u = ∞ is provided by (A.7), if the following requirement is satisfied:
ˆ

C

dv
U+(v)

(1 − v2)1/2

[
(1 + v)

(1 − v)

]i(1−ν2)/(8ρ)

exp

[
− iv

4ρ

]
= 0, (A.8)

where the integration path C is shown in figure A2. The last condition determines the spectrum
νn. If ρ � 1, the integral in (A.8) is determined by the contributions of the saddle points
v = ±ν of the function ϒ(v):

ϒ(v) = 1 − ν2

2
ln

(
1 + v

1 − v

)
− v. (A.9)

In the semiclassical limit n � 1, the contributions of these two saddle points are well separated,
and (A.8) yields the final asymptotical formula

−ϒ(νn)

4
= ρπ

(
n − 1

4

)
+ ρ arg

〈
U+(νn + v)√
1 − (νn + v)2

exp

[
i

4ρ
ϒ(νn + v)

]〉
, (A.10)

valid to all orders in ρ → 0. Here

ϒ(ν + v) = ϒ(ν + v) − ϒ(ν) − ν(v)2

1 − ν2
;

averaging 〈. . .〉 stands for

〈f (v)〉 =
ˆ ∞

−∞
dvf (v) exp

[
iν(v)2

4ρ(1 − ν2)

]{ˆ ∞

−∞
dv′ exp

[
iν(v′)2

4ρ(1 − ν2)

]}−1

,

providing

〈(v)2j+1〉 = 0, 〈(v)2j 〉 = [4iρ(1 − ν2)/ν]j�(1/2 + j)/�(1/2). (A.11)

18



J. Phys. A: Math. Theor. 42 (2009) 304025 S B Rutkevich

At small ρ,v, function U+(ν + v) can be expanded as

U+(ν + v) = 1 +
∞∑
i=1

∞∑
l=0

cilρ
i(v)l (A.12)

under appropriate normalization of φ(u).

A.2. Perturbation expansion

To obtain the explicit semiclassical expansion for the spectrum νn, we need

(i) to calculate several initial terms in expansion (A.12),
(ii) to substitute (A.12) into (A.10) and to expand the expression in 〈. . .〉 in powers of v,

(iii) to perform averaging in (A.10) by use of (A.11),
(iv) to expand arg〈. . .〉 in (A.10) in powers of ρ.

Steps (ii)–(iv) are straightforward and well suitable for computer calculations; below, we
describe only step (i).

Let us write down the formal Neumann series solving equation (A.1) in the class of the
generalized functions:

φ(u) = φ(0)(u) + φ(1)(u) + O(ρ2), (A.13)

φ(0)(u) = π

iν
[δ(u − ν) − δ(u + ν)],

φ(1)(u) = ρu

i

[
1

u2 − ν2
− 8

1

(u2 − ν2)2
+ 16

1 − ν2

(u2 − ν2)3

]
;

(A.14)

the principal values are implied for the singular terms in (A.14). Substitution of (10) into
(A.3), (A.4), (A.6) yields

g(u) = g(0)(u) + g(1)(u) + O(ρ2),

a = a(0) + a(1) + O(ρ2),

U(u) = U(0)(u) + U(1)(u) + O(ρ2),

where

g(0)(u) = 1

u2 − ν2
, a(0) = −1

2
, U(0)(u) = 1,

a(1) = − ρ

2πν2

[
− 2 + ν2 +

−2 − 2ν2 + ν4

2ν
ln

(
1 − ν

1 + ν

)]
.

We skip lengthy expressions for g(1)(u) and U(1)(u). Note that all singular terms at u = ν and
at u = −ν cancel in U(1)(u). The explicit expressions for the Taylor coefficients cil in (A.12)
read as

c10 = − iν

2
,

c11 = −6 + 10ν2 + 3ν4 − 3ν6

3πν3(ν2 − 1)2
− 2 + ν4

2πν4
ln

(
1 − ν

1 + ν

)
− i

2
,

c12 = −9 + 27ν2 − 37ν4 + 3ν6

6πν4(ν2 − 1)3
− ν2 − 3

4πν5
ln

(
1 − ν

1 + ν

)
,

Im c20 = νa(1)/ρ.
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These constants are sufficient to obtain the equation determining νn to the third order in ρ:

−ϒ(νn)

4
= ρπ

(
n − 1

4

)
+ ρ2 5 − 6ν2

n − 9ν4
n + 6ν6

n

12ν3
n

(
1 − ν2

n

)
+ ρ3

[
30 − 62ν2

n + 54ν4
n − 21ν6

n + 18ν8
n − 3ν10

n

6πν5
n

(
ν2

n − 1
)2

+
10 − 4ν2

n + 6ν4
n + 4ν6

n − ν8
n

4πν6
n

ln

(
1 − νn

1 + νn

)]
+ O(ρ4). (A.15)

Returning in equation (A.15) to the variables θn and λ which are related to νn and ρ by

νn = tanh θn, ρ = λ

4 cosh2 θn

,

we come finally to expansion (16)–(19).

Appendix B. Integral of the four-particle matrix element

It was shown in section 6 that the local third-order multi-quark corrections to the meson mass
can be expressed in terms of the integral of the four-particle matrix element:

W(β1, β2) =
ˆ ∞

−∞
dx

ˆ ∞

0
dy lim

β ′
1→β1

β ′
2→β2

〈β ′
2, β

′
1|σ(x, y)(1 − P0 − P2)σ (0, 0)|β1, β2〉 (B.1)

over the Euclidean half-plane (see equations (55) and (56)). In this section, we extract from
W(β1, β2) the most important ‘irreducible’ part Wirr(β1, β2) and transform it to a form suitable
for numerical calculations.

It is straightforward to rewrite formula (54), giving the local third-order semiclassical
correction to the meson energy δ3En(P ), in terms of W(β1, β2):

δ3En(P ) = −
(

hσ̄

m2

)3 4m6

En(P )
(
M2

n − 4m2
)W(β1, β2)

σ̄ 2
. (B.2)

Here

P = m(sinh β1 + sinh β2), En = m(cosh β1 + cosh β2)

are the meson momentum and energy, and β1 and β2 are the rapidities of two quarks (forming
the meson) at their collision; Mn = (

E2
n − P 2

)1/2
is the meson mass.

The matrix element in the integrand in (B.1) can be expanded by the use of the Wick rule
[23]:

G(β2, β1|β1, β2) ≡ lim
β ′

1→β1,

β ′
2→β2

〈β ′
2, β

′
1|σ(x, y)σ (0, 0)|β1, β2〉

= G(β1|β1)G(β2|β2)

G
− G(β1|β2)G(β2|β1)

G
− 1

G

(
G(β1, β2)

E(β1)E(β2)

)2

. (B.3)

Here we follow the notation of [23]:

x = (x, y) = (r cos θ, r sin θ), G(r) = 〈0|σ(x)σ (0)|0〉,
G(r, θ;β1, β2) = 〈0|σ(x)σ (0)|β1, β2〉,
〈β ′|σ(x)σ (0)|β〉 = 2πδ(β ′ − β) + G(r, θ;β ′|β),

E(r, θ;β) = exp
[ imr

2
sinh(β + iθ)

]
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and drop the explicit indication of position dependence for the matrix elements. The equality

〈β2, β1|σ(x)σ (0)|0〉 = − 〈0|σ(x)σ (0)|β1, β2〉
[E(r, θ;β1)E(r, θ;β2)]2

has been used in deriving (B.3). Explicit expressions for the matrix elements
G(r),G(r, θ;β1, β2),G(r, θ;β ′|β) in terms of the solutions ϕ(r), χ(r) of the sinh–Gordon
equation and associated Lax functions �+(r, θ;β),�−(r, θ;β) are known from [23].

Proceeding to polar coordinates r, θ in integral (B.1), one can easily show thatˆ π

0
dθG(r, θ;β2, β1|β1, β2) =

ˆ π

0
dθG(r, θ;β2 + β, β1 + β|β1 + β, β2 + β) (B.4)

for arbitrary real β. The proof of (B.4) is based on the relations

G(r, θ;β2, β1|β1, β2) = G(r, 0;β2 + iθ, β1 + iθ |β1 + iθ, β2 + iθ), (B.5)

G(β2 + iπ, β1 + iπ |β1 + iπ, β2 + iπ) = G(β2, β1|β1, β2), (B.6)

which follow from (B.3) and similar properties of functions G(β1, β2),G(β1|β2); see [23].
Equality (B.4) means that the integral on its left-hand side is Lorentz invariant.

Unfortunately, the integralˆ ∞

0
r dr

ˆ π

0
dθG(r, θ;β2, β1|β1, β2)

diverges at large r. It becomes convergent after subtraction of the ‘reducible part’ (see (B.1)):

G(r, θ;β2, β1|β1, β2)→ G(r, θ;β2, β1|β1, β2) − lim
β ′

1→β1

β ′
2→β2

〈β ′
2β

′
1|σ(r, θ)(P0 + P2)σ (0, 0)|β1, β2〉.

(B.7)

However, the second term on the right-hand side here does not satisfy the monodromy property
such as (B.6). This means that the local multi-quark correction (B.2) to the meson energy is
not Lorentz invariant by itself. We hope that the Lorentz invariance form of δ3En(P ) will be
restored in the third order in h after picking up all the terms contributing to it, as happens [2]
for the second-order term δ2En(P ).

At the moment, it is helpful to extract the ‘Lorentz-invariant’ term from the reducible part
in (B.7). Namely, we shall subdivide it as follows:

lim
β ′

1→β1

β ′
2→β2

〈β ′
2, β

′
1|σ(r, θ)(P0 + P2)σ (0, 0)|β1, β2〉

= G(r, θ;β2, β1|β1, β2) + δG(r, θ;β2, β1|β1, β2),

where the first term satisfies the required monodromy property

G(r, θ;β2 + iπ, β1 + iπ |β1 + iπ, β2 + iπ) = G(r, θ;β2, β1|β1, β2),

while the function δG(r, θ;β2, β1|β1, β2) does not satisfy such a property, but the integralˆ ∞

0
r dr

ˆ π

0
dθδG(r, θ;β2, β1|β1, β2)

converges at finite β1, β2 and vanishes in the infinite momentum limit (β1 + β2)/2 → +∞.
Note that function G(β2, β1|β1, β2) is analogous to function S(β|β) defined by

equation (5.13) on page 20 of [23], whereas δG(β2, β1|β1, β2) is analogous to the zig-zag
diagram (b) in figure 3 on page 19.

Let us obtain explicit expressions for G(r, θ;β2, β1|β1, β2).
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(i) Vacuum sector.

〈β2, β1|σ(r, θ)P0σ(0, 0)|β1, β2〉
= σ̄ 2 tanh2 β1 − β2

2
exp{−irm[sinh(β1 + iθ) + sinh(β2 + iθ)]}

= 2σ̄ 2 tanh2 β1 − β2

2
cos{rm[sinh(β1 + iθ) + sinh(β2 + iθ)]}

− σ̄ 2 tanh2 β1 − β2

2
exp{irm[sinh(β1 + iθ) + sinh(β2 + iθ)]}. (B.8)

The first and the second terms on the right-hand side of (B.8) should be assigned to
G(β2, β1|β1, β2) and δG(β2, β1|β1, β2), respectively.

(ii) Two-quark sector.

〈β ′
2, β

′
1|σ(r, θ)P2σ(0, 0)|β1, β2〉

=
ˆ ∞

−∞

dη1 dη2

(2π)2
〈β ′

2, β
′
1|σ(r, θ)|η2, η1〉〈η1, η2|σ(0, 0)|β1, β2〉.

This can be split into five diagrams:

+ +

+ + (B.9)

The contributions of the two former diagrams to G(β2, β1|β1, β2) are

→ 1

σ̄ 2
S(β1|β1)S(β2|β2), (B.10)

→ − 1

σ̄ 2
[R(β1|β2)]

2, (B.11)

where

R(β1|β2) = σ̄ 2 exp[−imr(sinh β1 + sinh β2)/2]
ˆ ∞

−∞

dη

2π
exp[imr sinh η] · coth

η − β1

2

× coth
η − β2

2
+ 2σ̄ 2 coth

β1 − β2

2
sin[mr(sinh β1 − sinh β2)/2]

+ σ̄ 2 exp[imr(sinh β1 + sinh β2)/2]
ˆ ∞

−∞

dη′

2π
exp[imr sinh η′]

× tanh
η′ − β1

2
tanh

η′ − β2

2
, S(β1|β1) = lim

β2→β1

R(β1|β2). (B.12)

Note that 0 < Imβj < π for j = 1, 2 is supposed in (B.12). It is easy to verify that

R(β1 + iπ |β2 + iπ) = R(β1|β2).

The third diagram in (B.9) is proportional to the function f (2)(t), which determines the
well-known large-distance asymptotics of the Ising correlation function [24]. Its contribution
to G(β2, β1|β1, β2) is

→ −2σ̄ 2 cos{rm[sinh(β1 + iθ) + sinh(β2 + iθ)]} tanh2 β1 − β2

2
f (2)(mr),

f (2)(t) = − 1

π2

{[
K2

1 (t) − K2
0 (t)

]
t2 − tK0(t)K1(t) +

1

2
K2

0 (t)

}
,

where K0(t) and K1(t) are MacDonald’s functions.
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The fourth and the fifth diagrams are equal to one another and can be written as

= −iσ̄ 2 tanh
β1 − β2

2
{1 + exp[−imr[sinh(β1 + iθ) + sinh(β2 + iθ)]]}

·T2(r, β1 + iθ, β2 + iθ) + σ̄ 2 tanh2 β2 − β1

2
+ iσ̄ 2 tanh

β1 − β2

2
× exp{−imr[sinh(β1 + iθ) + sinh(β2 + iθ)]}A4(r, β1 + iθ, β2 + iθ)

+ iσ̄ 2 tanh
β1 − β2

2
T2(r, β1 + iθ, β2 + iθ), (B.13)

where

T2(r, β1, β2) = B2(r, β1, β2) + U2(r, β1, β2) + V2(r, β1, β2) + A4(r, β1, β2),

and

B2(r, β1, β2) = −i
ˆ ∞

−∞

dη1 dη2

(2π)2
eimr(sinh η1+sinh η2) coth

η1 − β1

2
coth

η2 − β2

2
tanh

η1 − η2

2
,

U2(r, β1, β2) = −
ˆ ∞

−∞

dη2

2π
eimr(sinh β1+sinh η2) coth

η2 − β2

2
tanh

β1 − η2

2
,

V2(r, β1, β2) = −
ˆ ∞

−∞

dη1

2π
eimr(sinh η1+sinh β2) coth

η1 − β1

2
tanh

η1 − β2

2
,

A4(r, β1, β2) = −i eimr(sinh β1+sinh β2)

ˆ ∞

−∞

dη1 dη2

(2π)2
eimr(sinh η1+sinh η2)

· tanh
η1 − β1

2
tanh

η2 − β2

2
tanh

η1 − η2

2
.

Here, we again suppose that 0 < Imβj < π for j = 1, 2.
Note that

T2(r, β1 + iπ, β2 + iπ) = exp[−imr(sinh β1 + sinh β2)]T2(r, β1, β2).

The two former terms in (B.13) contribute to G(β2, β1|β1, β2), while all the rest of the
terms in (B.13) should be assigned to δG(β2, β1|β1, β2). Thus, the irreducible part of the
two-particle matrix element takes the form

Girr(r, θ;β2, β1|β1, β2) ≡ G(r, θ;β2, β1|β1, β2) − G(r, θ;β2, β1|β1, β2)

=
[
G(β1|β1)G(β2|β2)

G
− S(β1|β1)S(β2|β2)

σ̄ 2

]
−
[
G(β1|β2)G(β2|β1)

G
− [R(β1|β2)]2

σ̄ 2

]
−
[

1

G

(
G(β1, β2)

E(β1)E(β2)

)2

+ C2(β1, β2)

]
, (B.14)

where

C2(β1, β2) ≡ C2(r, θ;β1, β2) = 2σ̄ 2 tanh2 β2 − β1

2
+ 2σ̄ 2 tanh2 β1 − β2

2
× cos{rm[sinh(β1 + iθ) + sinh(β2 + iθ)]}[1 − f (2)(mr)]

− 2iσ̄ 2 tanh
β1 − β2

2
{1 + exp{−imr[sinh(β1 + iθ) + sinh(β2 + iθ)]}}

· T2(r, β1 + iθ, β2 + iθ).
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Integration of (B.14) in r and θ gives the irreducible part of the factor W(β1, β2):

Wirr(β1, β2) =
ˆ ∞

0
r dr

ˆ π

0
dθGirr(r, θ;β2, β1|β1, β2). (B.15)

The integral in r here is convergent for small enough |β1 − β2|, and

Wirr(β1, β2) = Wirr(β1 + β, β2 + β)

for arbitrary β.
On the other hand, the integralˆ ∞

0
r dr

ˆ π

0
dθδG(r, θ;β2, β1|β1, β2)

converges and vanishes in the infinite momentum frame.
So, the local multi-quark contribution to the third-order meson mass correction takes the

form

δ3M
2
n = −

(
hσ̄

m2

)3 8m6

M2
n − 4m2

Wirr(β1, β2)

σ̄ 2
, (B.16)

with Wirr(β1, β2) being given by (B.15). Three other third-order contributions to δM2
n come

from the two-fermion Bethe–Salpeter equation in the infinite momentum frame (13) and from
the quark mass and string tension renormalizations.
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